A spectral conversion approach to feature denoising and speech enhancement

نویسندگان

  • Athanasios Mouchtaris
  • Jan Van der Spiegel
  • Paul Mueller
  • Panagiotis Tsakalides
چکیده

In this paper we demonstrate that spectral conversion can be successfully applied to the speech enhancement problem as a feature denoising method. The enhanced spectral features can be used in the context of the Kalman filter for estimating the clean speech signal. In essence, instead of estimating the clean speech features and the clean speech signal using the iterative Kalman filter, we show that is more efficient to initially estimate the clean speech features from the noisy speech features using spectral conversion (using a training speech corpus) and then apply the standard Kalman filter. Our results show an average improvement compared to the iterative Kalman filter that can reach 6 dB in the average segmental output Signal-to-Noise Ratio (SNR), in low input SNR’s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non st...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Robust Speech Recognition for Adverse Environments

As the state-of-the-art speech recognizers can achieve a very high recognition rate for clean speech, the recognition performance generally degrades drastically under noisy environments. Noise-robust speech recognition has become an important task for speech recognition in adverse environments. Recent research on noise-robust speech recognition mostly focused on two directions: (1) removing the...

متن کامل

Speech enhancement with weighted denoising auto-encoder

A novel speech enhancement method with Weighted Denoising Auto-encoder (WDA) is proposed in this paper. A weighted reconstruction loss function is introduced to the conventional Denoising Auto-encoder (DA), and makes it suitable for the task of speech enhancement. First, the proposed WDA is used to model the relationship between the noisy and clean power spectrums of speech signal. Then, the es...

متن کامل

Perceptual wavelet adaptive denoising of speech

This paper introduces a novel speech enhancement system based on a wavelet denoising framework. In this system, the noisy speech is first preprocessed using a generalized spectral subtraction method to initially lower the noise level with negligible speech distortion. A perceptual wavelet transform is then used to decompose the resulting speech signal into critical bands. Threshold estimation i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005